The RcsCDB signaling system and swarming motility in Salmonella enterica serovar typhimurium: dual regulation of flagellar and SPI-2 virulence genes.

نویسندگان

  • Qingfeng Wang
  • Yifang Zhao
  • Michael McClelland
  • Rasika M Harshey
چکیده

The Rcs phosphorelay is a multicomponent signaling system that positively regulates colanic acid synthesis and negatively regulates motility and virulence. We have exploited a spontaneously isolated mutant, IgaA(T191P), that is nearly maximally activated for the Rcs system to identify a vast set of genes that respond to the stimulation, and we report new regulatory properties of this signaling system in Salmonella enterica serovar Typhimurium. Microarray data show that the Rcs system normally functions as a positive regulator of SPI-2 and other genes important for the growth of Salmonella in macrophages, although when highly activated the system completely represses the SPI-1/SPI-2 virulence, flagellar, and fimbrial biogenesis pathways. The auxiliary protein RcsA, which works with RcsB to positively regulate colanic acid and other target genes, not only stimulates but also antagonizes the positive regulation of many genes in the igaA mutant. We show that RcsB represses motility through the RcsB box in the promoter region of the master operon flhDC and that RcsA is not required for this regulation. Curiously, RcsB selectively stimulates expression of the flagellar type 3 secretion genes fliPQR; an RcsAB box located downstream of fliR influences this regulation. We show that excess colanic acid impairs swimming and inhibits swarming motility, consistent with the inverse regulation of the two pathways by the Rcs system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo.

The autoinducer-3 (AI-3)/epinephrine (Epi)/norepinephrine (NE) interkingdom signaling system mediates chemical communication between bacteria and their mammalian hosts. The three signals are sensed by the QseC histidine kinase (HK) sensor. Salmonella enterica serovar Typhimurium is a pathogen that uses HKs to sense its environment and regulate virulence. Salmonella serovar Typhimurium invades e...

متن کامل

Flagellin Is Required for Host Cell Invasion and Normal Salmonella Pathogenicity Island 1 Expression by Salmonella enterica Serovar Paratyphi A.

Salmonella enterica serovar Paratyphi A is a human-specific serovar that, together with Salmonella enterica serovar Typhi and Salmonella enterica serovar Sendai, causes enteric fever. Unlike the nontyphoidal Salmonella enterica serovar Typhimurium, the genomes of S. Typhi and S. Paratyphi A are characterized by inactivation of multiple genes, including in the flagellum-chemotaxis pathway. Here,...

متن کامل

The flagellar sigma factor FliA (sigma(28)) regulates the expression of Salmonella genes associated with the centisome 63 type III secretion system.

One of the essential features of all pathogenic strains of Salmonella enterica is the ability to enter into nonphagocytic cells. This pathogenic property is mediated by the Salmonella pathogenicity island 1 (SPI-1)-encoded type III secretion system. Expression of components and substrates of this system is subject to complex regulatory mechanisms. These mechanisms include a number of specific a...

متن کامل

A global role for Fis in the transcriptional control of metabolism and type III secretion in Salmonella enterica serovar Typhimurium.

Fis is a key DNA-binding protein involved in nucleoid organization and modulation of many DNA transactions, including transcription in enteric bacteria. The regulon of genes whose expression is influenced by Fis in Salmonella enterica serovar Typhimurium (S. typhimurium) has been defined by DNA microarray analysis. These data suggest that Fis plays a central role in coordinating the expression ...

متن کامل

Genetics of swarming motility in Salmonella enterica serovar typhimurium: critical role for lipopolysaccharide.

Salmonella enterica serovar Typhimurium can differentiate into hyperflagellated swarmer cells on agar of an appropriate consistency (0.5 to 0.8%), allowing efficient colonization of the growth surface. Flagella are essential for this form of motility. In order to identify genes involved in swarming, we carried out extensive transposon mutagenesis of serovar Typhimurium, screening for those that...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 189 23  شماره 

صفحات  -

تاریخ انتشار 2007